منابع مشابه
Factoring bivariate sparse (lacunary) polynomials
We present a deterministic algorithm for computing all irreducible factors of degree ≤ d of a given bivariate polynomial f ∈ K[x, y] over an algebraic number field K and their multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the input and in d . Moreover, we show that the factors over Q of degree ≤ d which are not binomials can also be computed in tim...
متن کاملDivisibility Test for Lacunary Polynomials
Given two lacunary (i.e. sparsely-represented) polynomials with integer coefficients, we consider the decision problem of determining whether one polynomial divides the other. In the manner of Plaisted [6], we call this problem 2SparsePolyDivis. More than twenty years ago, Plaisted identified as an open problem the question of whether 2SparsePolyDivis is in P [7]. Some progress has been made si...
متن کاملInterpolation of Shifted-Lacunary Polynomials [Extended Abstract]
Given a “black box” function to evaluate an unknown rational polynomial f ∈ Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t ∈ Z>0, the shift α ∈ Q, the exponents 0 ≤ e1 < e2 < · · · < et, and the coefficients c1, . . . , ct ∈ Q \ {0} such that f (x) = c1(x − α)1 + c2(...
متن کاملIrreducibility testing of lacunary 0, 1-polynomials
A reciprocal polynomial g(x) ∈ Z[x] is such that g(0) 6= 0 and if g(α) = 0 then g(1/α) = 0. The non-reciprocal part of a monic polynomial f(x) ∈ Z[x] is f(x) divided by the product of its irreducible monic reciprocal factors (to their multiplicity). This paper presents an algorithm for testing the irreducibility of the nonreciprocal part of a 0, 1-polynomial (a polynomial having each coefficien...
متن کاملOn testing the divisibility of lacunary polynomials by cyclotomic polynomials
An algorithm is described that determines whether a given polynomial with integer coefficients has a cyclotomic factor. The algorithm is intended to be used for sparse polynomials given as a sequence of coefficientexponent pairs. A running analysis shows that, for a fixed number of nonzero terms, the algorithm runs in polynomial time.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1966
ISSN: 1385-7258
DOI: 10.1016/s1385-7258(66)50011-7